Making sense of an ECHO report

Dr Alexander Borg
Consultant Cardiologist
Mater Dei Hospital
Malta
October 2024

The Basic Structure of an Echo Report

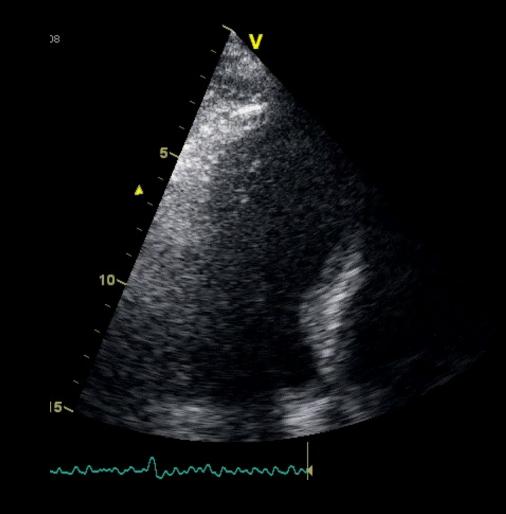
- Procedural details
 - Image quality, habitus, arrhythmias, patient cooperation
- Left chambers
 - Size, volume, EF, RWMA, hypertrophy, diastolic function
- Left sided valves
 - Regurgitation, stenosis, calcification
- Right chambers
 - Size, TAPSE/FAC, RWMA, evidence of pulmonary hypertension
- Right sided valves
 - Regurgitation, stenosis, evidence of pulmonary hypertension
- Miscellanea
 - Aortic root and ascending aorta
 - ASD/VSD
 - Descending aorta for coarctation/PDA
 - Pericardial/pleural effusions...

And finally...

The CONCLUSION

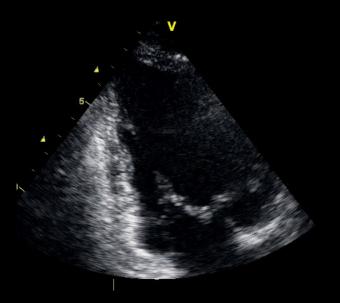
- Most important part!
- Must contain enough information to be sufficient on its own to most readers
- Must be understood by a non-specialist
- Highlight the main finding in the light of the referral reason (like "Section 1" on death certificate)
- Mention findings which may have impact on main finding/referral reason ("Section 2a" on death certificate)
- Mention findings which have no direct impact on main finding/referral but may be clinically relevant now or in the future ("Section 2b" on death certificate)
- Recommend clinical course of action (if done by a cardiologist)

- Mildly reduced LVEF/LVEF at lower limits of normal
- Mild LV Hypertrophy
- Diastolic dysfunction
- Mild valve lesions and aortic sclerosis
- Dilated left atrium
- Mildly dilated aortic root



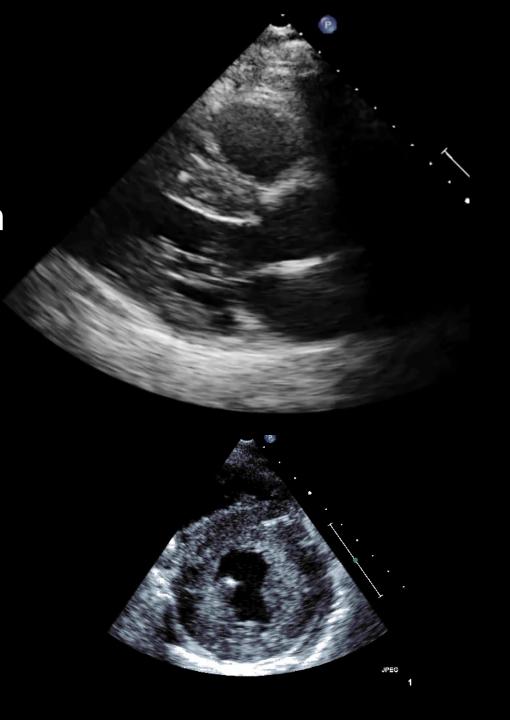
- Mildly reduced LVEF/LVEF at lower limits of normal
- Mild LV Hypertrophy
- Diastolic dysfunction
- Mild valve lesions and aortic sclerosis
- Dilated left atrium
- Mildly dilated aortic root


LVEF 45-50%/lower limits of normal/mildly impaired – 1 (in the absence of valve disease)


- May be normal finding in athletes
- May be an expected finding in LBBB and paced patients
- Could be a consequence of:
 - previous MI/myocarditis
 - h/o chemotherapy and/or radiotherapy
 - Alcohol
- Can be an early cardiomyopathy in
 - Hypertension
 - Diabetes
 - Obesity

LVEF 45-50%/lower limits of normal/mildly impaired - 2

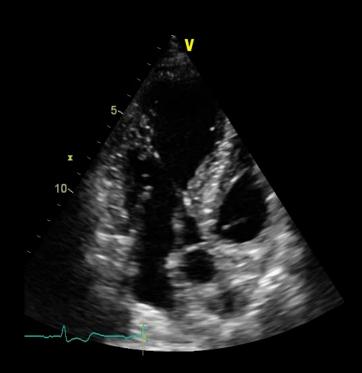
- Clues:
 - RWMA with thinned myocardium: h/o MI
 - Spherical, globally hypocontractile heart: inherited cardiomyopathy, previous myocarditis, alcohol toxicity, chemotherapy
 - Increased wall thickness
 - Hypertensive cardiomyopathy
 - Hypertrophic cardiomyopathy
 - Amyloid heart disease
 - Valve disease
- Dilated LA, pulmonary hypertension and advanced diastolic dysfunction imply significant LV systolic dysfunction



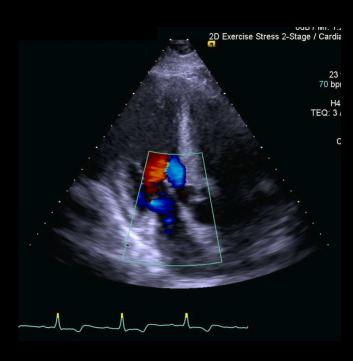
- Mildly reduced LVEF/LVEF at lower limits of normal
- Mild LV Hypertrophy
- Diastolic dysfunction
- Mild valve lesions and aortic sclerosis
- Dilated left atrium
- Mildly dilated aortic root

Mild LV hypertrophy (in absence of valve disease) 1

- "Grey" zone between 11 and 15 mm
 - Hypertension
 - Athletes
 - Diabetics
 - Amyloid
 - Sarcomeric HCM
- May need Cardiac MRI to confirm



Mild LV hypertrophy (in absence of valve disease) 2

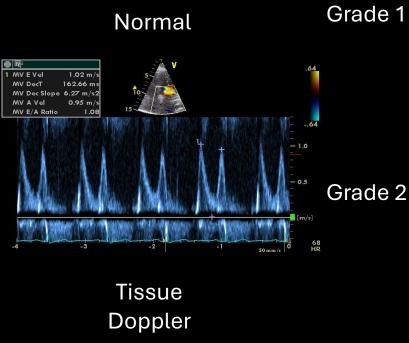

- Clues suggesting serious disease
 - Advanced diastolic dysfunction
 - Dilated LA
 - Involvement of RV
 - Small cavity (especially in females)
 - Asymmetric septal hypertrophy (IVS:LVPW thickness > 1.3 (or > 1.5 in presence of hypertension) or any form of asymmetric hypertrophy suggests HCM
 - Systolic anterior motion of MV apparatus and LVOT obstruction suggests HCM
 - Abnormal ECG
 - Family history of SCD

Some images of hypertrophy

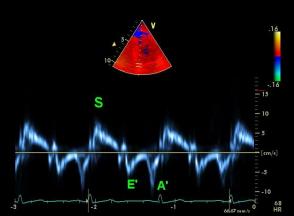
HCM with SAM

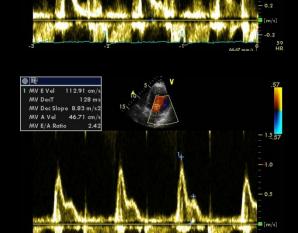
HCM with LVOT obstruction; turbulence in LVOT on colour Doppler

Amyloid Heart Disease



- Mildly reduced LVEF/LVEF at lower limits of normal
- Mild LV Hypertrophy
- Diastolic dysfunction
- Mild valve lesions and aortic sclerosis
- Dilated left atrium
- Mildly dilated aortic root



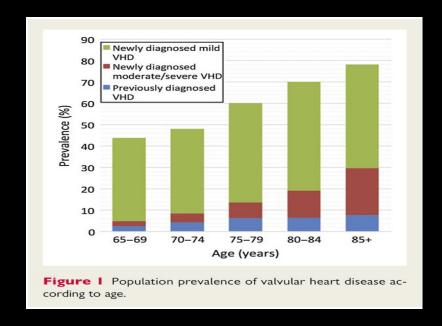

Diastolic dysfunction (in presence of normal LVEF) 1

- Measured routinely on echo using transmitral Doppler and tissue Doppler of longitudinal mitral valve annulus velocities
- Classified as
 - Grade 1 (impaired relaxation)
 - Grade 2 (pseudonormalisation)
 - Grade 3 (high filling pressures) (decreased compliance)

Grade 3

Diastolic dysfunction 2

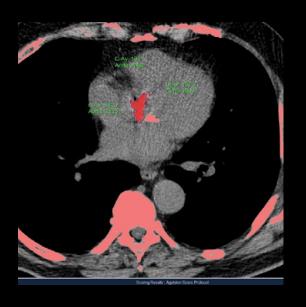
- Common in "healthy" general population and frequency increases with age (27%)¹
 - E/A ratio is commonly < 1.0 after age 60 years (50% of pts > 60 years)
- Clues to presence of underlying significant disease
 - Dilated LA
 - Diabetes
 - Hypertension
 - Sedentary obese females
- Watch out for increased E/E' a marker of high LV filling pressures
 - Be wary if E/E' > 8.5 and especially if > 15...there is a problem with LV function




- Mildly reduced LVEF/LVEF at lower limits of normal
- Mild LV Hypertrophy
- Diastolic dysfunction
- Mild valve lesions and aortic sclerosis
- Dilated left atrium
- Mildly dilated aortic root

Mild valve lesions and aortic sclerosis 1

- Mild valvular heart disease is found in 50% of asymptomatic people > 65 years¹
- The most common is a ortic sclerosis
- Aortic valve sclerosis is thickening and calcification of aortic valve without haemodynamic problems
- Is a marker of higher risk of cardiovascular events and mortality
- May progress to aortic stenosis (< 2% per year)²



¹D'Arcy et al. EHJ 2016;37:3515-3522. ²Coffey et al. JACC 2014;63:2852

Sclerosis Stenosis

Mild AS

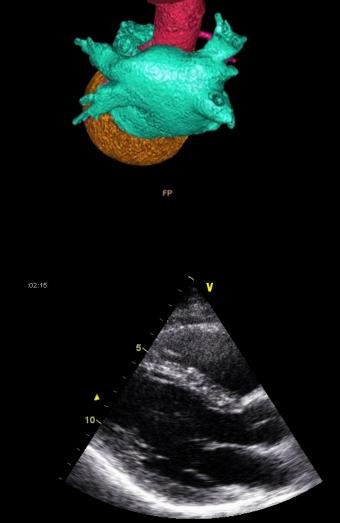
- Mild AS progresses at variable rates
 - On average, AVA decreases by 0.08 cm² per year¹
 - Faster progression in older age, CKD, LVH, AF²

 Guidelines advocate surveillance echo every 2 or 3 years in young patients with no or mild calcification

- What about other mild valve lesions?
 - It depends...

Other mild valve lesions

- Mild AR: ignore unless
 - Co-existent AS
 - Aortic root dilatation
 - Effacement of ST junction
 - Known aortic dilatation and Marfan's syndrome
 - Autoimmune connective tissue disease
- Mild MR: ignore unless
 - Prolapse or known Marfan's syndrome
 - Severe LA dilatation
 - Severe heart failure or LV systolic dysfunction or dilated LV
 - Rheumatic changes


- Mildly reduced LVEF/LVEF at lower limits of normal
- Mild LV Hypertrophy
- Diastolic dysfunction
- Mild valve lesions and aortic sclerosis
- Dilated left atrium
- Mildly dilated aortic root

Dilated left atrium 1

- LA size is the "HgbA1c" of LV dysfunction
- AP diameter from parasternal long axis view is the convention (though volumes from apical views are more accurate)

• Upper limit depends on body size, general cutoff 3.7 – 3.9 cm

Dilated left atrium 2

Implies chronic/longstanding disease

- Causes/associations (in presence of normal LV)
 - AF
 - Hypertension
 - Mitral valve disease
 - Athletic adaptation
 - HFpEF

- Mildly reduced LVEF/LVEF at lower limits of normal
- Mild LV Hypertrophy
- Diastolic dysfunction
- Mild valve lesions and aortic sclerosis
- Dilated left atrium
- Mildly dilated aortic root

Mildly dilated aortic root 1

- Mildly dilated means 35-40 mm in men, 34-38 mm in women
- Can be seen in
 - Elderly
 - Large patients
 - Hypertension
 - Athletes
 - Genetic syndromes such as bicuspid AoV and Marfan's
- Should be adjusted to patient size (IMP!)

Mildly dilated aortic root 2

- Clues to the presence of significant disease
 - Abnormal AoV/presence of AR or AS
 - MV prolapse
 - Body habitus of Marfans
 - Increase in dimension over time (≥5mm)
 - FH of aortic dissection/aneurysm
- May need confirmation with CT/MRI

CONCLUSIONS

- Mildly abnormal incidental findings in an otherwise normal patient are common
- They may be a manifestation of an underlying problem (known or unknown)
- ... or a consequence of the main underlying disease
- BUT...there is almost always an explanation
- Unless...

